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Preface

This guide draws upon insights from Google's work on AI agents, Anthropic's perspectives on 
building effective agents, and various other resources available on the internet. I'm particularly 
grateful to my friends and colleagues for their valuable review and insightful discussions that 
helped shape this document.

Disclaimer

This guide is not meant to be an authoritative document - it is intended to be a quick primer to 
help understand AI agents and build a simple AI agent. The definitions and concepts presented 
here are not universally accepted standards in the field. Nothing in this document should be 
considered exhaustive or complete, as the field of AI agents is rapidly evolving with new 
approaches and understandings emerging regularly.

The views, information and opinions presented in this document combine insights from various 
sources along with the author's own experiences and perspectives, and do not necessarily 
represent those of Fetch.ai. This document is not an official publication of Fetch.ai.

Purpose and Audience

This guide is a quick introduction to AI agents. It specifically aims to help:

Through discussions at hackathons and developer meetups, I noticed common questions and
misconceptions about AI agents. This guide aims to provide:

Students and developers new to the concept of AI agents
Hackathon participants looking to build their first agents

Developers seeking to understand core concepts without diving into theoretical depths

A collection of fundamental concepts explained in simple terms
Addressing common misconceptions

Providing a clear path from understanding to implementation
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Chapter 1 - Foundation and Core Concepts
1.1 Introduction to AI Agents
In the rapidly evolving landscape of artificial intelligence, AI agents represent a significant
advancement over traditional software applications, offering more flexibility, adaptability, and
intelligence in tackling complex tasks across various domains.

At their core, agents are software entities designed to perform autonomous actions by:

The Evolution of AI Systems

To understand AI agents, it's crucial to recognize the progression of AI systems:

1. Observing their environment through various inputs (digital or physical)
2. Processing, analyzing, and reasoning about information using advanced algorithms and

large language models
3. Making decisions and taking actions, often by leveraging external tools and APIs

4. Learning from outcomes and adapting their behavior over time
5. Utilizing memory to retain information and improve performance
6. Engaging in self-reflection, evaluation, and course correction

1. Traditional Applications
Fixed logic and predefined rules
Limited or no adaptation
Direct input-to-output mapping

Example : Rule-based expert systems

2. AI-Enhanced Applications
Foundation model integration (LLMs, neural networks)

Task-specific intelligence, guided learning abilities, Human-directed operations
Limited context awareness

Example : Modern Chatbots, Specialized AI tools (image generators, code assistants)

3. Agentic Systems
Capable of taking autonomous decisions with or without human in the loop

Multi-step planning and execution
Dynamic tool discovery and usage, self-directed learning, continuous context
awareness
Example : Operator released by OpenAI, Self-driving cars, Swarm robotics
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Understanding System Types

AI systems can be categorized into two primary types:

While the term "AI agent" is often used interchangeably, many practical applications don't need
full agentic behavior. Instead, structured workflows are sufficient for most tasks, offering better
control and predictability.

Agentic Workflow and Degree of Autonomy

Since full autonomy is neither possible (in majority of the systems) nor needed in most practical
applications, the term 'Agentic Workflow' is gaining popularity as it combines the benefits of
structured workflows with the flexibility of AI agents. This hybrid approach allows for more
dynamic decision-making within a controlled framework, striking a balance between autonomy
and predictability.

Agentic workflows represent a middle ground where AI agents operate within defined processes
but have the ability to make decisions and adapt to changing circumstances. They leverage the
strengths of both AI workflows and agents by:

This approach is particularly useful for tasks that require some level of flexibility but still need to
operate within certain boundaries or comply with specific rules. As businesses seek to optimize
their operations while managing risks, agentic workflows offer a practical solution that combines
the efficiency of automation with the intelligence of AI agents.

The term 'AI agent' is widely used in the industry and by startups, often without a clear,
universal definition. In practice, the autonomy of these so-called agents falls on a spectrum
rather than being a binary classification. There is no definitive technical measure of autonomy,
which leads to varying interpretations and implementations across different systems.

1. AI Workflows: These are predefined sequences where LLMs and other tools are
orchestrated using explicit code paths. They follow structured logic and operate with a
defined start and end point.

2. AI Agents: These are more dynamic, allowing LLMs to take control of their processes and
tool usage, making autonomous decisions on how to accomplish a task.

1. Providing a structured sequence of tasks for consistency and control

2. Allowing AI agents to make autonomous decisions within these sequences
3. Enabling dynamic problem-solving and adaptation to complex scenarios
4. Maintaining oversight and predictability for critical business processes
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This spectrum of autonomy can range from:

The degree of autonomy granted to an AI system often depends on factors such as:

As the field evolves, we may see more standardized ways to measure and describe the level of
autonomy in AI systems. For now, it's important to understand that when someone claims to
use 'AI agents', the actual level of autonomy can vary significantly, and it's crucial to delve
deeper into the specific capabilities and limitations of each system.

This nuanced understanding of autonomy reinforces the value of agentic workflows, as they
offer a flexible framework that can accommodate various degrees of AI decision-making while
maintaining necessary control structures.

Three Pillars of Agentic Workflows

The effectiveness of agentic workflows is based on three key elements.

Implementation Challenges

While the benefits are significant, it's important to note that implementing and managing these
workflows can be complex. This complexity reinforces the need for a nuanced approach to
autonomy and careful consideration of the specific use case and organizational context.

1. Highly structured workflows with minimal decision-making capabilities

2. Semi-autonomous systems that can make decisions within predefined parameters
3. More flexible agents that can adapt their approach based on context
4. Highly autonomous systems that can formulate and pursue their own goals within a given

domain

The complexity of the task
The potential risks involved
The need for human oversight

The capabilities of the underlying AI technologies

1. Autonomy: Handling tasks with minimal human input.
2. Adaptability: Adjusting to unique business needs and changing conditions.

3. Optimization: Continuously improving through machine learning.
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AI Workflow

AI Agents

Combine LLMs with predefined processes
Follow structured but flexible paths
Best for: Complex but predictable tasks where:

Process steps are well-understood and consistent

Predictability is more important than flexibility
You need tight control over execution

Performance and reliability are crucial

Example:

# AI workflow example
class StockAnalysisWorkflow:
 def analyze(self, stock_symbol):
     # Uses LLM but in FIXED order:
     # Always: price → news → recommendation
     # Can't skip steps or change order

     price_analysis = llm.analyze(f"Analyze {stock_symbol} price 
trends")
     news_analysis = llm.analyze(f"Analyze {stock_symbol} recent news")
     return llm.recommend(price_analysis, news_analysis)

Dynamically direct their own processes
Maintain control over task execution

Best for: Dynamic planning, adaptive execution, goal-oriented behavior where:
Tasks require dynamic decision-making
Problems have multiple valid solution paths

Flexibility and adaptation are crucial
Complex tool interactions are needed
Tasks benefit from maintaining context

Example:

# AI agent example
class StockAnalysisAgent:
   def analyze(self, stock_symbol):

# LLM DECIDES everything:
# - What to analyze first (price? news? competitors?)
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The core difference is that AI agents have:

Genuine Autonomy

Strategic Flexibility

Contextual Understanding

Dynamic Goal Management

# - Whether to dig deeper into any area
# - When analysis is sufficient
# Can adapt strategy based on what it finds

strategy = llm.decide(f"How should we analyze {stock_symbol}?")
while not self.analysis_complete():

next_step = llm.decide("What should we analyze next?")
findings = self.execute_step(next_step)
if findings.need_different_approach:

strategy = llm.revise_strategy(findings)

Not just following predefined steps with decision points

Actually reasoning about what actions to take
Ability to discover and adapt strategies

Can handle unexpected situations

Doesn't just choose from predefined options
Creates novel approaches to problems

Understands the implications of its actions

Can reason about tool capabilities
Maintains meaningful context about its goals and progress

Can reformulate goals when needed
Understands when to abandon or modify objectives
Can handle competing or conflicting goals
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Core Components of an Agent

A generic agent architecture, consists of several key components:

Figure 1: Core components of an AI Agent

1. Model Layer

2. Orchestration Layer

3. Memory System

4. Tool Integration

Central decision-making engine
Processes input and context
Generates reasoning and plans

Manages the execution flow
Coordinates tool usage

Monitors progress towards goals

Short-term working memory
Long-term knowledge storage
Context retention

External API connections
Data processing capabilities

Action execution interfaces
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Figure 2: Agent Runtime Environment

This diagram shows a more detailed "Agent Runtime Environment" with three main layers that
work together:
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Orchestration Layer (Top)

Tools Layer (Middle)

Model Layer (Bottom)

The arrows in the diagram show the information flow:

This implementation provides more concrete details about how the four core components
(Model, Orchestration, Memory, and Tools) work together in a practical system.

Contains the high-level control components:
Profile & Goals: Defines the agent's objectives and constraints

Memory System: Implements both short and long-term memory
Reasoning Engine: Coordinates decision-making and orchestrates the flow between
components

Breaks down tool integration into three specific categories:
API Tools: Interfaces for external API connections
Data Processing: Tools for handling and transforming data

External Services: Integration with third-party services

This layer implements the "Tool Integration" component from the core architecture

Contains three specialized components:
Large Language Model: The foundation model for understanding and generation
Planning System: Handles task decomposition and strategy

Response Generation: Manages the creation of outputs

The Orchestration Layer controls the overall process flow
The Tools Layer acts as an intermediary between orchestration and models

There's a feedback loop from the Model Layer back to the Orchestration Layer, showing
how the system can iteratively refine its responses
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General Criteria for Agency

Before implementing an agent, evaluate if your system really needs true agency by checking
these criteria:

Decision Autonomy

State Management

Tool Integration

Goal Orientation

ReAct Pattern

The simplest AI agents typically operate using the ReAct (Reason-Action) framework, which
follows a cyclical pattern. ReAct is an iterative approach that alternates between thinking and
acting, combining the reasoning capabilities of large language models (LLMs) with the ability to
interact with external tools and environments. The core workflow includes:

Can the system choose different paths based on context?
Does it make meaningful decisions about tool usage?

Can it adapt its strategy during execution?

Does it maintain meaningful state?
Can it use past interactions to inform decisions?

Does it track progress toward goals?

Can it choose tools dynamically?
Does it understand tool capabilities?

Can it combine tools in novel ways?

Does it understand and work toward specific objectives?

Can it recognize when goals are achieved?
Can it adjust goals based on new information?

1. Reasoning (Thought): The agent analyzes the current state, objectives, and available
information.

2. Acting (Action): Based on its reasoning, the agent executes specific operations or uses
tools.

3. Observation: The agent obtains results from its actions.
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Figure 3: ReAct Pattern

Key Components:

4. Iteration: The cycle continues, with the agent thinking and acting based on new
observations until reaching a final answer.

1. Thought:
Internal reasoning about the current state and objectives

Analysis of available information
Planning next steps and formulating strategies

2. Action:
Execution of chosen steps
Tool usage and integration (e.g., calculators, search engines, APIs)

Interaction with external systems or environments

3. Observation:
Gathering results from actions

Analyzing outcomes
Updating understanding and knowledge base
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Implementation and Best Practices:

Advantages of ReAct:

Applications:

ReAct has shown promise in various domains, including:

By implementing the ReAct pattern, developers can create more versatile and capable AI
agents that can handle a wide range of tasks requiring both reasoning and interaction with
external resources.

4. Iteration:
Continuous loop of Thought-Action-Observation

Dynamic adjustment of plans based on new information
Progress towards final goal or answer

1. Prompt Engineering: Craft a clear system prompt that defines the agent's behavior and
available tools.

2. Tool Integration: Provide the agent with access to relevant external tools and APIs to
expand its capabilities.

3. Memory Management: Implement a mechanism for the agent to retain and utilize
information from previous steps.

4. Error Handling: Design the system to gracefully handle unexpected inputs or tool failures.

5. Performance Optimization: Balance the number of reasoning steps with action execution
to maintain efficiency.

Combines internal knowledge with external information gathering
Enables complex problem-solving through iterative reasoning and action
Improves transparency and interpretability of AI decision-making

Allows for dynamic adaptation to new information and changing scenarios

Question answering systems
Task planning and execution
Data analysis and interpretation

Decision-making in complex environments
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Part 1.2 - Common Misconceptions
The term "agent" in AI is overused and often applied inconsistently, diminishing its meaning and
creating confusion about the actual capabilities of AI systems. Some of the common
misconceptions are explained below:

Misconception 1: "My application uses multiple LLM calls, so it's an
agent"

Misconception 2: "I'm using tools and APIs, so it's an agent"

Misconception 3: "Having memory makes it an agent"

# This is NOT an agent - it's a multi-step LLM application
def process_document(doc):
    summary = llm.generate_summary(doc)
    keywords = llm.extract_keywords(summary)
    sentiment = llm.analyze_sentiment(summary)
    return {

"summary": summary,
"keywords": keywords,
"sentiment": sentiment

    }

# This is NOT an agent - it's an automated workflow
def analyze_stock(symbol):
    price_data = stock_api.get_price(symbol)
    news = news_api.get_recent_news(symbol)
    analysis = llm.analyze(f"Price: {price_data}, News: {news}")
    return analysis

# This is NOT an agent - just stateful LLM interaction
class ChatSystem:
    def __init__(self):

self.conversation_history = []

    def respond(self, user_input):
self.conversation_history.append(user_input)
response = llm.generate(context=self.conversation_history)
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Misconception 4: "Using planning means its an agent"

Misconception 4: "Complex prompt engineering makes it an agent"

Misconception 5: "Having a feedback loop makes it an agent"

self.conversation_history.append(response)
return response

# This is NOT an agent - it's structured task decomposition
def handle_task(task):
    # Fixed planning template
    steps = llm.break_down_task(task)
    results = []
    for step in steps:

result = execute_step(step)
results.append(result)

    return combine_results(results)

# This is NOT an agent - just sophisticated prompting
def analyze_with_cot(query):
    prompt = f"""
    Step 1: Understand the query
    {query}
    Step 2: Break down the components
    Step 3: Analyze each component
    Step 4: Synthesize findings
    """
    return llm.generate(prompt)

# This is NOT an agent - just iterative refinement
def iterative_response(query, max_iterations=3):
    response = initial_response(query)
    for _ in range(max_iterations):

quality = evaluate_response(response)
if quality > threshold:

break
response = improve_response(response)

    return response
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Misconception 6: "The LLM performs the actions in an agent"

Key Points About LLM's Role

# Common MISCONCEPTION: People think this actually performs actions
def incorrect_understanding():
    llm_response = llm.generate("Please save this file to disk")
    # The LLM can't actually save files!

# REALITY: Tools perform actions, LLM orchestrates
class PropertyAgent:
    def __init__(self):

self.tools = {
'database': DatabaseTool(),
'email': EmailTool(),
'calendar': CalendarTool()

}

    def handle_request(self, query):
# LLM determines what needs to be done
action_plan = llm.plan_actions(query)

# TOOLS actually perform the actions
for action in action_plan:

if action.type == "schedule_viewing":
# Calendar tool performs the actual scheduling
self.tools['calendar'].create_appointment(action.details)

elif action.type == "send_confirmation":
# Email tool performs the actual sending
self.tools['email'].send_message(action.details)

1. LLM's Actual Functions:
Planning and strategizing actions

Reasoning about which tools to use
Interpreting results from tools
Generating natural language responses
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This misconception is particularly important because it helps explain:

2. Tools' Actual Functions:
File operations

Database queries
API calls

Network requests
System modifications
Real-world interactions

# Clear separation of responsibilities
class AgentSystem:
    def process_task(self, task):

# LLM PLANS the action
plan = self.llm.create_execution_plan(task)

# TOOLS EXECUTE the action
for step in plan:

if step.requires_web_access:
result = self.web_tool.fetch_data(step.url)

elif step.requires_database:
result = self.db_tool.query(step.sql)

elif step.requires_file_operation:
result = self.file_tool.process(step.path)

# LLM INTERPRETS results and plans next steps
next_actions = self.llm.analyze_results(result)

Why tool integration is crucial for practical agent systems
Why agents need careful permission and capability management

The importance of proper tool abstraction and safety measures
Why LLM responses alone can't perform real-world actions
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Figure 4: LLM vs Tools: Planning and Execution Flow

This diagram illustrate several key points:

This helps explain why:

1. Separation of Responsibilities
LLM handles planning, reasoning, and decision-making
Tools perform actual real-world actions
Clear boundaries between thinking and doing

2. Flow of Control
User requests flow through the LLM first

LLM determines which tools to use
Tools execute actions and return results
LLM interprets results and plans next steps

3. Real World Impact
Only tools can affect the external world
LLM provides intelligence but not execution

Actions are constrained by available tools

Tool integration is crucial for practical agent systems

Security and permissions must be implemented at the tool level
LLM capabilities alone don't enable real-world actions
System design must carefully consider tool access and limitations
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Misconception 7:"My AI Assistant/AI chatbot is an AI Agent"

However, sometimes as we discussed in chapter 1, AI assistants could have certain level of
Agentic behavior depending on how they are implemented.

Key Differences:

# This is NOT an agent - it's an AI Assistant
class BasicAIAssistant:
    def chat(self, user_input):

response = llm.generate_response(user_input)
return response

# This is CLOSER to an agent
class AIAgent:
    def __init__(self):

self.tools = load_available_tools()
self.memory = AgentMemory()
self.planner = ActionPlanner()

    def handle_task(self, task):
# Autonomous decision making
goal = self.planner.define_goal(task)
plan = self.planner.create_plan(goal)

# Dynamic tool selection and execution
while not goal.is_achieved():

next_action = self.planner.next_action(plan)
tool = self.select_tool(next_action)
result = tool.execute(next_action.parameters)

# Adaptive behavior
if not result.is_successful():

plan = self.planner.revise_plan(result)

self.memory.update(result)

1. Autonomy Level
Assistant: Responds to direct commands and questions

Agent: Makes autonomous decisions about how to achieve goals

2. Tool Usage
Assistant: May have access to tools but uses them as instructed

Agent: Autonomously decides which tools to use and when
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Example Task Comparison:

3. Goal Orientation
Assistant: Focuses on responding to immediate requests

Agent: Maintains and works toward longer-term goals

4. Memory Usage
Assistant: May maintain conversation history
Agent: Uses memory strategically for goal achievement

5. Decision Making
Assistant: Makes limited decisions within conversation scope
Agent: Makes complex decisions about actions, strategy, and resource use

# Research Task Example

# AI Assistant Approach:
async def assistant_research(query):
    """Responds to direct questions with available information"""
    response = await llm.generate(

f"Please research about {query}"
    )
    return response

# AI Agent Approach:
async def agent_research(query):
    """Autonomously conducts comprehensive research"""
    plan = await self.create_research_plan(query)
    sources = []

    for step in plan:
if step.type == "web_search":

results = await self.tools.search(step.query)
sources.extend(results)

elif step.type == "verify_information":
verified_data = await self.tools.fact_check(results)

elif step.type == "synthesize":
synthesis = await self.tools.analyze(verified_data)

# Adaptive planning
if self.evaluate_progress() < self.quality_threshold:

plan = await self.revise_research_plan()

    return self.compile_research(sources, synthesis)
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This misconception is particularly important because:

Figure 5: AI Agent Vs. AI Assistant

These diagrams highlight the key differences between AI Assistants and AI Agents:

1. It affects system design expectations

2. It influences how we evaluate AI system capabilities
3. It impacts how we implement security and permissions
4. It shapes user expectations and interaction patterns

1. Architecture Complexity
Assistant: Simple, linear flow with reactive tool usage
Agent: Complex system with multiple interacting components

2. Processing Flow
Assistant: Direct input → response pattern
Agent: Multi-step process with planning and feedback loops

3. Tool Integration
Assistant: Passive, explicitly requested tool usage

Agent: Active, autonomous tool selection and execution
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4. Memory Usage
Assistant: Basic conversation tracking

Agent: Sophisticated memory system for context and learning

5. Decision Making
Assistant: Reactive decisions based on immediate input
Agent: Proactive decisions based on goals and strategy
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Part 1.3 - Building a Multi-Agent System
Multi-agent Systems

An agent uses an LLM to control application flow. However, as systems grow complex, using a
single agent can become challenging. This is where multi-agent systems come in.

Why Use Multiple Agents?

Common Multi-agent Patterns

We will build our agent using a supervisor based multi-agent pattern.

Simplicity: Break complex tasks into manageable pieces
Expertise: Create specialized agents for specific tasks

Better Control: Manage how agents work together

1. Network Pattern
Agents can communicate freely with every other agent
Any agent can decide which other agent to call next

Flexible but potentially complex to manage

2. Supervisor Pattern
Central supervisor coordinates other agents

Clear control flow through supervisor
Better oversight and management

Can be implemented through tool-calling

3. Hierarchical Pattern
Supervisors of supervisors

Allows for more complex control flows
Suitable for large-scale systems

4. Custom Workflow Pattern
Agents communicate with specific subset of agents
Parts of flow are deterministic

Limited decision-making about which agents to call next
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Supervisor-Based Agent Architecture

A team-based architecture typically consists of three main components:

Figure 6: Supervisor-Based Multi-Agent Architecture

1. Supervisor Agent
Coordinates team activities
Makes routing decisions

Ensures task completion

2. Specialist Agents
Handle domain-specific tasks

Maintain focused expertise
Provide detailed analysis

3. State Management System
Maintains conversation context
Tracks team progress

Manages shared resources
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Implementation Pattern using Langgraph

The code implements a team-based architecture using langgraph with three essential 
components that work together to process complex tasks:

1. Supervisor Agent

2. Specialist Agents

def create_supervisor_agent(llm: ChatOpenAI):
    """Creates a supervisor agent that orchestrates the team's activities.

    The supervisor agent is the core decision-maker that:
1. Analyzes incoming queries to understand requirements
2. Determines which specialist agent is best suited for each subtask
3. Routes tasks to appropriate specialists
4. Monitors the overall progress of the task
5. Decides when enough information has been gathered

    Args:
llm: Language model for decision making

    Returns:
A supervisor agent configured with team coordination capabilities

    """
    supervisor_prompt = """
    Core responsibilities:

1. Analyze incoming queries to break down complex tasks
2. Determine what specific information is needed
3. Select the most appropriate specialist for each subtask
4. Monitor progress and ensure task completion
5. Decide when sufficient information has been gathered
"""

    return create_team_supervisor(
llm=llm,
system_prompt=supervisor_prompt,
members=["SpecialistA", "SpecialistB"]

    )

def create_specialist_agent(
    llm: ChatOpenAI,
    domain: str,
    tools: List[Tool]
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3. State Management

):
    """Creates a specialist agent with domain-specific expertise.

    Specialist agents are focused experts that:
1. Handle specific types of tasks within their domain
2. Use specialized tools for their domain
3. Provide structured analysis and insights
4. Request clarification when needed

    Args:
llm: Language model for domain-specific processing
domain: Area of expertise (e.g., "financial analysis", "market 

research")
tools: List of domain-specific tools available to this specialist

    Returns:
A specialist agent configured for its specific domain

    """
    system_prompt = f"""
    You are specialized in {domain}.
    When responding:

1. Use your domain-specific tools effectively
2. Provide clearly structured outputs
3. Explicitly request any missing information needed
"""

    return create_agent(
llm=llm,
tools=tools,
system_prompt=system_prompt

    )

class TeamState(TypedDict):
    """Manages the shared state and context for the entire team.

    Attributes:
messages: List of all messages in the conversation history
team_members: List of available specialist agents
next: Identifier of the next agent to act
information_needed: List of missing information to be gathered
reasoning: Explanation for the current decision or action

    """
    messages: List[BaseMessage]
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Team Graph Implementation

The team graph orchestrates how all components work together:

    team_members: List[str]
    next: str
    information_needed: List[str]
    reasoning: str

def create_team_graph():
    """Creates a coordinated team of agents with defined interaction 
patterns.

    The graph defines:
1. How agents communicate with each other
2. The flow of information between agents
3. Decision points for task routing
4. Conditions for task completion

    Process Flow:
1. Supervisor receives task and analyzes requirements
2. Tasks are routed to appropriate specialists
3. Specialists process tasks and return results
4. Supervisor evaluates results and decides next steps
5. Process continues until task is complete

    Returns:
A compiled graph ready for task processing

    """
    # Initialize team members
    specialist_a = create_specialist_agent(...)
    specialist_b = create_specialist_agent(...)
    supervisor = create_supervisor_agent(...)

    # Create the coordination graph
    graph = StateGraph(TeamState)

    # Define team structure
    graph.add_node("SpecialistA", specialist_a)
    graph.add_node("SpecialistB", specialist_b)
    graph.add_node("supervisor", supervisor)
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    # Define information flow
    graph.add_edge("SpecialistA", "supervisor")
    graph.add_edge("SpecialistB", "supervisor")

    # Set up decision routing
    graph.add_conditional_edges(

"supervisor",
lambda x: x["next"],
{

"SpecialistA": "SpecialistA",
"SpecialistB": "SpecialistB",
"FINISH": END

}
    )

    return graph.compile()
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Chapter 2 - Building Your Own Financial Analysis
AI Agent
2.1 Core Systems and Architecture

System Overview
The Financial Analysis Agent is an intelligent system designed to analyze financial information
using multiple specialized agents with direct tool integration through the LangChain framework.
The system combines SEC filing analysis with real-time market data to provide comprehensive
financial insights.

Architecture Diagram

Tools

Research Team

Search Tool RAG Tool

Tavily API RAG System

Search Agent

Supervisor Agent

SEC Analysis Agent

User Query

Final Response

Figure 7: Financial Analysis Agent Architecture
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Project Structure

Core Components

A. Research Team State

B. Specialized Agents

src/
├── agents/
│   ├── __init__.py
│   ├── search_agent.py      # Search specialist using Tavily
│   ├── sec_agent.py # SEC specialist using RAG
│   └── supervisor.py # Team coordinator
├── tools/
│   ├── __init__.py
│   ├── search.py # Tavily tool implementation
│   └── analysis.py # RAG tool implementation
├── rag/
│   ├── __init__.py
│   ├── chain.py # RAG chain implementation
│   └── loader.py # Document loading utilities
├── graph/
│   ├── __init__.py
│   └── state.py # Research team state management
├── utils/
    ├── __init__.py
    └── helpers.py # Helper functions for agents

class ResearchTeamState(TypedDict):
    messages: List[BaseMessage]      # Conversation history
    team_members: List[str] # Active team members
    next: str # Next agent to act
    information_needed: List[str]    # Required information
    reasoning: str # Decision reasoning

1. SEC Analysis Agent
Purpose: Analyzes SEC filings and financial documents
Key Features:
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Uses RAG system directly through LangChain tool

Focused on historical financial data
Processes regulatory filings

Implementation:

from ..tools.analysis import retrieve_information

def create_sec_agent(llm: ChatOpenAI):
    system_prompt = """You are a financial analyst specialized in 
SEC filings...."""
    return create_agent(

llm=llm,
tools=[retrieve_information],
system_prompt=system_prompt

    )

2. Search Agent
Purpose: Gathers real-time market information

Key Features:
Uses Tavily search directly through LangChain tool
Focuses on current market data

Retrieves analyst opinions

Implementation:

from ..tools.search import tavily_search

def create_search_agent(llm: ChatOpenAI):
    system_prompt = """You are a research assistant..."""
    return create_agent(

llm=llm,
tools=[tavily_search],
system_prompt=system_prompt

    )
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2.2 Tool Implementation and Integration
1. Direct Tools
A. Tavily Search Tool

B. RAG Analysis Tool

# src/tools/search.py
from typing import Annotated
from langchain_core.tools import tool
from tavily import TavilyClient
import os
from dotenv import load_dotenv

load_dotenv()

tavily_client = TavilyClient(api_key=os.getenv("TAVILY_API_KEY"))

@tool
def tavily_search(query: str) -> str:
    """Search for real-time information using Tavily."""
    try:

result = tavily_client.search(query)
return str(result)

    except Exception as e:
return f"Error performing search: {str(e)}"

# src/tools/analysis.py
from typing import Annotated
from langchain_core.tools import tool
from ..rag.chain import create_rag_chain

rag_chain = None

@tool
def retrieve_information(query: Annotated[str, "query to analyze financial
documents"]) -> str:
    """Use RAG to get specific information from financial documents."""
    try:

global rag_chain
if rag_chain is None:

rag_chain = create_rag_chain()
return rag_chain.invoke(query)
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2. RAG Implementation

A. Document Processing

B. RAG Chain Setup

    except Exception as e:
return f"Error analyzing documents: {str(e)}"

# src/rag/loader.py
class DocumentLoader:
    def __init__(self, file_path: str):

self.file_path = file_path

    @staticmethod
    def tiktoken_len(text):

tokens = tiktoken.encoding_for_model("gpt-4").encode(text)
return len(tokens)

    def load_and_split(self):
# Load document using PyMuPDF
docs = PyMuPDFLoader(self.file_path).load()

# Split into chunks
text_splitter = RecursiveCharacterTextSplitter(

chunk_size=300,
chunk_overlap=0,
length_function=self.tiktoken_len

)
return text_splitter.split_documents(docs)

# src/rag/chain.py
def create_rag_chain(file_path: str = "data/raw/apple_10k.pdf"):
    """Create RAG chain for document analysis."""
    # Load and split document
    loader = DocumentLoader(file_path)
    split_chunks = loader.load_and_split()

    # Create embeddings and vectorstore
    embedding_model = OpenAIEmbeddings(model="text-embedding-3-small")
    vectorstore = Qdrant.from_documents(

split_chunks,
embedding_model,
location=":memory:",
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3. Tool Usage in Agents

A. Search Agent Integration

collection_name="sec_filings"
    )

    # Create retriever
    retriever = vectorstore.as_retriever()

    # Create prompt
    template = """Use the provided context to answer questions about the 
company's financials.

    Context: {context}
    Question: {question}

    Answer the question based on the context provided. Include specific 
numbers and data when available."""

    prompt = ChatPromptTemplate.from_template(template)

    # Create chain
    chain = (

{"context": retriever, "question": RunnablePassthrough()}
| prompt
| ChatOpenAI(model="gpt-4-turbo-preview")
| StrOutputParser()

    )

    return chain

# src/agents/search_agent.py
def create_search_agent(llm: ChatOpenAI):
    """Creates a search agent specialized in market research."""

    system_prompt = """You are a research assistant who can search for up-
to-date 
    financial information using the tavily search engine.

    When responding:
1. Always cite sources
2. Focus on recent market data and analyst reports
3. If SEC data is mentioned, compare it with current market views
4. Highlight any significant discrepancies with official filings
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B. SEC Analyst Integration

    Format your response as:
1. Market Data: [your findings]
2. Analyst Views: [key opinions]
3. Relevance to SEC Data: [if applicable]
"""

    return create_agent(
llm=llm,
tools=[tavily_search],
system_prompt=system_prompt

    )

# src/agents/sec_agent.py
def create_sec_agent(llm: ChatOpenAI):
    """Creates an agent specialized in SEC filings analysis."""

    system_prompt = """You are a financial analyst specialized in SEC 
filings analysis.
    After analyzing SEC filings:

1. If you need market context, clearly state what specific market data
you need

2. If numbers need industry comparison, explicitly request competitor
data

3. Always include specific numbers and trends from the filings
4. If you spot significant changes or unusual patterns, highlight them

    Format your response as:
1. Data from SEC Filings: [your findings]
2. Additional Context Needed: [if any]
3. Analysis: [your insights]
"""

    return create_agent(
llm=llm,
tools=[retrieve_information],
system_prompt=system_prompt

    )
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2.3 State Management and Helper Functions
1. State Management
What is State?

State in our system functions like a brain's working memory. It's the central system that keeps
track of all vital information during the analysis process. Think of it as a group project manager
that:

State Structure Explained

Each component serves a specific purpose:

Records and maintains the entire conversation history

Determines which agent should work next
Tracks what information is still missing
Documents the reasoning behind decisions

from typing import TypedDict, List, Annotated
from langchain_core.messages import BaseMessage
import operator

class ResearchTeamState(TypedDict):
    """Define the state structure for the research team."""
    messages: Annotated[List[BaseMessage], operator.add]  # Conversation 
history
    team_members: List[str] # Available agents
    next: str # Next agent to act
    information_needed: List[str] # Required 
information
    reasoning: str # Decision reasoning

1. messages:
Functions like a conversation transcript

Maintains chronological order of all interactions
Provides context for agents to understand previous discussions

Example: If a user asks about "these numbers", agents can look back to see what
numbers were discussed

2. team_members:
Acts as a team roster

39



State Management Flow

Contains list of available specialized agents (e.g., Search, SECAnalyst)

Helps supervisor know available resources for task assignment
Example: ["Search", "SECAnalyst"]

3. next:
Works like a "passing the baton" system
Indicates which agent should act next
Can signal completion with "FINISH"

Example: If market data is needed, next = "Search"

4. information_needed:
Functions as a shopping list of missing information
Guides agents on what to look for
Helps drive conversation towards completion

Example: ["current stock price", "last quarter revenue"]

5. reasoning:
Serves as decision documentation

Explains why specific agents were chosen
Aids in debugging and system improvement

Example: "Choosing SECAnalyst because we need historical financial data"

1. Initial State Creation

def create_initial_state(query: str) -> ResearchTeamState:
    """Create initial state from user query."""
    return {

"messages": [HumanMessage(content=query)],
"team_members": ["Search", "SECAnalyst"],
"next": "",
"information_needed": [],
"reasoning": ""

    }

2. State Updates

def update_state(state: ResearchTeamState, agent_response: dict) -> 
ResearchTeamState:
    """Update state with agent response."""
    new_state = state.copy()
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The state management system ensures:

2. Helper Functions Explained
A. agent_node Helper

This helper functions as a universal translator and task manager for agents. Think of it as a
standardized communication interface that ensures all agents can work together effectively.

    new_state["messages"].extend(agent_response["messages"])
    return new_state

Consistent tracking of conversation progress

Proper coordination between agents
Clear documentation of decision-making
Efficient information gathering

def agent_node(state, agent, name):
    """Helper function to create agent nodes."""
    try:

# Add information needed to the state if available
if "information_needed" in state:

message_content = f"""Information needed:
{', '.join(state['information_needed'])}

Query: {state['messages'][-1].content}"""
state['messages'][-1] = HumanMessage(content=message_content)

# Process through agent
result = agent.invoke(state)

# Format response
return {

"messages": [
HumanMessage(

content=result["output"], 
name=name

)
]

}
    except Exception as e:

logger.error(f"Error in agent node {name}: {e}")
raise
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The agent_node helper:

B. create_agent Helper

This helper serves as a specialized agent factory that sets up agents with their specific
capabilities and communication patterns.

1. Prepares Information:
Takes the current state as input

Adds any required information to the query
Ensures the agent has full context for decision-making

2. Manages Communication:
Standardizes inter-agent communication
Maintains consistent message formatting

Keeps conversation history organized and accessible

def create_agent(
    llm: ChatOpenAI,
    tools: list,
    system_prompt: str,
) -> AgentExecutor:
    """Create a function-calling agent and add it to the graph."""
    try:

# Enhance system prompt with team context
system_prompt += (

"\nWork autonomously according to your specialty, using the 
tools available to you."

" Do not ask for clarification."
" Your other team members will collaborate with you with their 

own specialties."
" You are chosen for a reason! You are one of the following team 

members: {team_members}."
)

# Create prompt template
prompt = ChatPromptTemplate.from_messages([

("system", system_prompt),
MessagesPlaceholder(variable_name="messages"),
MessagesPlaceholder(variable_name="agent_scratchpad"),

])

# Create and return agent
agent = create_openai_functions_agent(llm, tools, prompt)
executor = AgentExecutor(agent=agent, tools=tools)
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The create_agent helper:

C. create_team_supervisor Helper

This crucial helper creates the supervisor agent that coordinates the entire team's activities.

return executor

    except Exception as e:
logger.error(f"Error creating agent: {e}")
raise

1. Sets Up Agent Capabilities:
Assigns specific tools to the agent

Defines the agent's area of expertise
Establishes behavioral guidelines

2. Configures Communication Style:
Sets up tool interaction patterns
Defines communication protocols

Establishes standardized message formats

def create_team_supervisor(
    llm: ChatOpenAI, 
    system_prompt: str,
    members: List[str]
) -> Callable:
    """Create an LLM-based supervisor with enhanced reasoning."""

    # Define possible routing options
    options = ["FINISH"] + members

    # Define routing function schema
    function_def = {

"name": "route",
"description": "Select the next role based on query analysis.",
"parameters": {

"title": "routeSchema",
"type": "object",
"properties": {

"next": {
"title": "Next",
"anyOf": [{"enum": options}],

},
"reasoning": {
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Why These Helpers Matter

These helper functions form the backbone of our agent system by enabling:

"title": "Reasoning",
"type": "string",
"description": "Explanation for why this agent should 

act next"
},
"information_needed": {

"title": "Information Needed",
"type": "array",
"items": {"type": "string"},
"description": "List of specific information needed from 

this agent"
}

},
"required": ["next", "reasoning", "information_needed"],

},
    }

    # Create prompt template
    prompt = ChatPromptTemplate.from_messages([

("system", system_prompt),
MessagesPlaceholder(variable_name="messages"),
(

"system",
"""Given the conversation above, who should act next? Consider:
1. What information do we have?
2. What's still missing?
3. Which agent can best provide the missing information?

Select from: {options}"""
),

    ]).partial(options=str(options), team_members=", ".join(members))

    return (
prompt
| llm.bind_functions(functions=[function_def], 

function_call="route")
| JsonOutputFunctionsParser()

    )

1. Standardized agent creation and configuration
2. Consistent communication patterns across the system
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The combination of these helpers ensures:

3: Research Graph System

Overview
The research graph functions as a sophisticated traffic control system for our agent-based
research process. It manages the flow of information and coordinates the actions of different
agents to ensure efficient and organized research operations.

1. Core Functions
A. Flow Management

The research graph:

Example Flow:

B. Implementation

3. Proper state management and tracking

4. Efficient team coordination
5. Easy system expansion and modification

Clean separation of concerns

Maintainable and extensible code
Reliable agent interactions
Structured team coordination

Consistent system behavior

Directs queries to appropriate agents based on expertise
Handles responses and information processing

Coordinates communication between different agents
Ensures smooth transitions between different research phases

User Query → Supervisor → Search Agent → Supervisor → SEC Agent → Supervisor 
→ Response

def create_research_graph(rag_chain) -> StateGraph:
    """Create the research team graph."""
    # Initialize LLM
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    llm = ChatOpenAI(model="gpt-4-turbo-preview")

    # Create specialized agents
    search_agent = create_search_agent(llm)
    sec_agent = create_sec_agent(llm)

    # Create agent nodes with partial application
    search_node = functools.partial(agent_node, agent=search_agent, 
name="Search")
    sec_node = functools.partial(agent_node, agent=sec_agent, 
name="SECAnalyst")

    # Create team supervisor
    supervisor = create_supervisor_agent(llm)

    # Initialize graph with state type
    graph = StateGraph(ResearchTeamState)

    # Add agent nodes to graph
    graph.add_node("Search", search_node)
    graph.add_node("SECAnalyst", sec_node)
    graph.add_node("supervisor", supervisor)

    # Define primary transitions
    graph.add_edge("Search", "supervisor")
    graph.add_edge("SECAnalyst", "supervisor")

    # Add conditional routing from supervisor
    graph.add_conditional_edges(

"supervisor",
lambda x: x["next"],
{

"Search": "Search",
"SECAnalyst": "SECAnalyst",
"FINISH": END

},
    )

    # Configure entry point
    graph.set_entry_point("supervisor")

    return graph.compile()
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2. Query Processing and Communication

A. Query Processing Flow

The process_financial_query  function serves as the entry point for all financial analysis
requests:

This function:

B. Query Flow Lifecycle

def process_financial_query(chain, query: str):
    """Process a financial query through the research graph."""
    try:

# Initialize and invoke the research chain
result = chain.invoke({

"messages": [HumanMessage(content=query)],
"team_members": ["Search", "SECAnalyst"],
"information_needed": [],
"reasoning": ""

})
return result

    except Exception as e:
return f"Error processing query: {str(e)}"

1. Takes a query and initializes the research process
2. Creates initial state with default team configuration
3. Triggers the supervisor's analysis and decision-making

4. Manages the flow through various agents
5. Returns consolidated findings and analysis

1. Query Reception:
System receives financial query

Initializes research state
Prepares team configuration

2. Analysis Phase:
Supervisor analyzes query intent
Identifies required information types
Determines optimal agent sequence

Plans information gathering strategy

3. Execution Phase:
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Example Usage

C. Agent Communication Protocol

The system uses a standardized communication protocol to ensure consistent and effective
interaction between agents:

Routes tasks to appropriate agents

Coordinates information gathering
Manages agent transitions
Consolidates findings

# Example query processing
query = "What are Apple's recent revenue trends and market performance?"
result = process_financial_query(research_chain, query)

# Example response format
{
    "messages": [

{
"role": "agent",
"name": "Search",
"content": "Market Data: [Recent market findings...]"

},
{

"role": "agent",
"name": "SECAnalyst",
"content": "Financial Analysis: [SEC filing insights...]"

}
    ]
}

1. Message Structure:

{
    "messages": List[BaseMessage],    # Complete conversation history
    "next": str, # Next agent designation
    "information_needed": List[str],  # Specific data requirements
    "reasoning": str # Decision justification
}

2. Agent Response Formats:
SEC Analysis Agent:
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3. Key Components
A. Node Structure

B. Edge System

Financial Data Findings

Context Requirements
Analytical Insights
Historical Trends

Search Agent:
Current Market Data
Analyst Perspectives

SEC Data Correlation
Market Trends

3. Communication Flow Control:
Structured message passing

Clear handoff protocols
Explicit state transitions
Documented decision paths

1. Agent Nodes:
Represent specialized research agents (Search, SECAnalyst)

Contain specific tools and capabilities
Handle particular aspects of research

2. Supervisor Node:
Manages workflow and agent selection
Makes routing decisions

Ensures research completeness

1. Direct Edges:
Connect agents to supervisor
Enable immediate feedback loops

Maintain clear communication paths

2. Conditional Edges:
Enable dynamic routing based on state

Allow for flexible workflow adaptation
Support complex decision trees
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The research graph serves as the foundation for coordinated, efficient research operations
while maintaining flexibility and reliability.

2.4 System Configuration and Startup
Environment Configuration
A. Required API Keys

The system requires several API keys to function properly:

B. Environment Setup

# .env file structure
OPENAI_API_KEY=your_openai_api_key
TAVILY_API_KEY=your_tavily_api_key
AGENTVERSE_API_KEY=your_agentverse_api_key

from dotenv import load_dotenv
import os

# Load environment variables
load_dotenv()

# Verify environment configuration
def verify_env_config():
    """Verify all required API keys are present."""
    required_keys = [

"OPENAI_API_KEY",
"TAVILY_API_KEY",
"AGENTVERSE_API_KEY"

    ]

    missing_keys = [
key for key in required_keys 
if not os.getenv(key)

    ]

    if missing_keys:
raise EnvironmentError(

f"Missing required API keys: {', '.join(missing_keys)}"
)
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System Initialization

A. RAG and Research Chain Setup

B. Main Entry Point

from src.rag.chain import create_rag_chain
from src.graph.state import create_research_graph

def init_financial_system():
    """Initialize the RAG and research chain."""
    # Create RAG chain with specific document
    rag_chain = create_rag_chain("data/raw/apple_10k.pdf")

    # Initialize research graph with RAG chain
    chain = create_research_graph(rag_chain)

    return chain

if __name__ == "__main__":
    # Load environment variables
    load_dotenv()

    # Verify environment configuration
    verify_env_config()

    # Import and run agent
    from src.agentverse.register import run_agent
    run_agent()
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Chapter 3 - End to End Application with
Agentverse Integration

3.1 Architecture Overview
What is Agentverse?

Agentverse is a virtual hub designed for creating, managing, and deploying agents. It provides
an accessible platform for both developers and non-technical users to interact with Fetch.ai's
autonomous agent technology, offering features like agent discovery, remote communication,
and storage capabilities.

🌐 Fetch Network Integration

The Fetch Network, through its open nature, provides the foundational infrastructure with:

Why register your agent with Agentverse?

Registration with Agentverse offers several key benefits:

1. Almanac Contract
Core smart contract for agent registration

Acts as a comprehensive repository
Serves as single point of truth

2. Discovery Mechanism
Enables network-wide agent discovery
Maintains registry of agent capabilities

1. Agent Discovery
Makes your agent discoverable by other agents in the network
Publishes your agent's capabilities to potential collaborators

2. Interaction Capabilities
Enables peer-to-peer agent communication
Allows leveraging functionalities of other registered agents

3. Secure Collaboration
Establishes secure connections through the Almanac contract
Facilitates seamless agent-to-agent interactions

Enables collaborative problem-solving
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Figure 8: Agent registration with Fetch Network

System Overview

This diagram depicts an end to end application architecture, where the Client Application
interacts with a Prime Agent to discover and utilize various specialized Agents registered
within the Agentverse.
The Prime Agent orchestrates the communication between the Client and the Agents to
fulfill the client's requests.

This architecture allows for a modular and extensible system, where new agents can be
easily integrated, and the Prime Agent can orchestrate the interactions between agents to
fulfill complex client requests.
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Figure 9: Application Architecture
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3.2: Core components and Implementation
In this chapter, we'll transform the Financial Analysis Agent we built in Chapter 2 into a
complete application by:

Registering financial analysis agent with Agentverse

The Financial Analysis Agent we built in Chapter 2 needs to be registered with Agentverse
through the registration process. This enables other agents to discover and communicate with
it.For a comprehensive implementation of the end to end application, refer to the full source
code repository at Financial-Analysis-AI-Agent.

Agent Registration Implementation (src/agentverse/register.py)

This code needs to be added in the financial analysis agent folder.

Agent Registration and Setup

1. Registering it with Agentverse for discovery
2. Creating a Primary Agent to handle routing and communication

3. Building a user interface for interaction

def init_agent():
    """Initialize and register the agent with agentverse"""
    global financial_identity, research_chain
    try:

# Initialize the research chain
research_chain = init_financial_system()

# Initialize identity and register with Agentverse
financial_identity = Identity.from_seed(

os.getenv("FINANCIAL_AGENT_KEY"), 
0

)

# Register with detailed capabilities description
register_with_agentverse(

identity=financial_identity,
url="http://localhost:5008/webhook",
agentverse_token=os.getenv("AGENTVERSE_API_KEY"),
agent_title="Financial Analysis Agent",
readme = """

<description>A comprehensive financial analysis agent that 
combines 
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Query Processing and Response

Inc.</description>
<use_cases>

<use_case>Get detailed revenue analysis from SEC 
filings</use_case>

<use_case>Analyze risk factors from latest 10-
K</use_case>

<use_case>Track financial metrics and trends</use_case>
</use_cases>
<payload_requirements>

<payload>
<requirement>

<parameter>query</parameter>
<description>What would you like to know about 

Apple's financials?</description>
</requirement>

</payload>
</payload_requirements>

"""
)

@app.route('/webhook', methods=['POST'])
def webhook():
    try:

# Parse incoming message
data = request.get_data().decode('utf-8')
message = parse_message_from_agent(data)
query = message.payload.get("request", "")
agent_address = message.sender

# Validate query
if not query:

return jsonify({"status": "error", "message": "No query 
provided"}), 400

# Process query using research chain
result = research_chain.invoke({

"messages": [HumanMessage(content=query)],
"team_members": ["Search", "SECAnalyst"]

})

# Format response for client
formatted_result = {

"analysis": [
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Project Structure Overview

{
"role": msg.type if hasattr(msg, 'type') else "message",
"content": msg.content,
"name": msg.name if hasattr(msg, 'name') else None

}
for msg in result.get('messages', [])

]
}

# Send response back through Agentverse
send_message_to_agent(

financial_identity,
agent_address,
{'analysis_result': formatted_result}

)
return jsonify({"status": "analysis_sent"})

    except Exception as e:
logger.error(f"Error in webhook: {e}")
return jsonify({"status": "error", "message": str(e)}), 500

Financial-Analysis-AI-Agent/
├── backend/ # Primary Agent implementation
│   └── app.py # Primary Agent Flask application
├── frontend/ # React Vite frontend
│   ├── src/
│   │   ├── components/
│   │   │   └── ui/     # shadcn/ui components
│   │   │ └── card.jsx
│   │   ├── OptimusPrime.jsx
│   │   ├── App.jsx
│   │   └── main.jsx
│   ├── public/
│   ├── package.json
│   ├── vite.config.js
│   └── .env
└── financial-analysis-agent/  # From Chapter 2
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Prerequisites

Before setting up the application, ensure you have:

Environment Setup

Create .env files for both backend and frontend:

Starting Order

The components must be started in this specific order:

# Required software
Python 3.8+
Node.js 16+
Git

# Python packages for backend
flask
flask-cors
python-dotenv
fetchai-sdk

# Node packages will be installed during frontend setup

# backend/.env
PRIMARY_AGENT_KEY=your_primary_agent_key
AGENTVERSE_API_KEY=your_agentverse_api_key
FINANCIAL_AGENT_PORT=5008
PRIMARY_AGENT_PORT=5001

# frontend/.env
VITE_API_URL=http://localhost:5001

1. Start Financial Analysis Agent (from Chapter 2):

# From project root
python main.py

2. Start Primary Agent:

cd backend
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Primary Agent Implementation

The Primary Agent acts as an intermediary between the frontend and the Financial Analysis
Agent. It's implemented in backend/app.py .

Required Imports

Basic Setup

python app.py

3. Start Frontend:

cd frontend
npm run dev

from flask import Flask, request, jsonify
from flask_cors import CORS
from fetchai.crypto import Identity
from fetchai.registration import register_with_agentverse
from fetchai.communication import parse_message_from_agent, 
send_message_to_agent
from fetchai import fetch
import logging
import os
from dotenv import load_dotenv

# Configure logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

# Initialize Flask app with CORS
app = Flask(__name__)
CORS(app, resources={r"/api/*": {'origins': 'http://localhost:5174'}})

# Initialize Primary Agent class
class PrimaryAgent:
    def __init__(self):

self.identity = None
self.latest_response = None

    def initialize(self):
try:
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API Endpoints

Search Agents Endpoint

self.identity = 
Identity.from_seed(os.getenv("PRIMARY_AGENT_KEY"), 0)

register_with_agentverse(
identity=self.identity,
url="http://localhost:5001/webhook",
agentverse_token=os.getenv("AGENTVERSE_API_KEY"),
agent_title="Financial Query Router",
readme="<description>Routes queries to Financial Analysis 

Agent</description>"
)
logger.info("Primary agent initialized successfully!")

except Exception as e:
logger.error(f"Initialization error: {e}")
raise

    def find_financial_agent(self):
"""Find our registered financial analysis agent"""
try:

available_ais = fetch.ai("Financial Analysis Agent")
agents = available_ais.get('ais', [])

if agents:
logger.info(f"Found financial agent at address: {agents[0]

['address']}")
return agents[0]

return None

except Exception as e:
logger.error(f"Error finding financial agent: {e}")
return None

# Create global instance
primary_agent = PrimaryAgent()

@app.route('/api/search-agents', methods=['GET'])
def search_agents():
    """Search for available agents based on the financial query"""
    try:

query = request.args.get('query', '')
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Send Request Endpoint

if not query:
return jsonify({"error": "Query parameter 'query' is 

required."}), 400

logger.info(f"Searching for agents with query: {query}")
available_ais = fetch.ai(query)
agents = available_ais.get('ais', [])

extracted_data = [
{

'name': agent.get('name'),
'address': agent.get('address')

}
for agent in agents

]

logger.info(f"Found {len(extracted_data)} agents matching the 
query")

return jsonify(extracted_data), 200

    except Exception as e:
logger.error(f"Error finding agents: {e}")
return jsonify({"error": str(e)}), 500

@app.route('/api/send-request', methods=['POST'])
def send_request():
    try:

data = request.json
payload = data.get('payload', {})
user_input = payload.get('request')  # Get request from nested 

payload
agent_address = data.get('agentAddress')

if not user_input:
return jsonify({"error": "No input provided"}), 400

# Find financial analysis agent if address not provided
if not agent_address:

agent = primary_agent.find_financial_agent()
if not agent:

return jsonify({"error": "Financial analysis agent not 
available"}), 404

agent_address = agent['address']
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Get Response Endpoint

Webhook Endpoint

# Send request to financial agent
send_message_to_agent(

primary_agent.identity,
agent_address,
{

"request": user_input
}

)

return jsonify({
"status": "request_sent", 
"agent_address": agent_address, 
"payload": payload

})

    except Exception as e:
logger.error(f"Error processing request: {e}")
return jsonify({"error": str(e)}), 500

@app.route('/api/get-response', methods=['GET'])
def get_response():
    try:

if primary_agent.latest_response:
response = primary_agent.latest_response
primary_agent.latest_response = None
return jsonify(response)

return jsonify({"status": "waiting"})
    except Exception as e:

logger.error(f"Error getting response: {e}")
return jsonify({"error": str(e)}), 500

@app.route('/webhook', methods=['POST'])
def webhook():
    try:

data = request.get_data().decode("utf-8")
message = parse_message_from_agent(data)
primary_agent.latest_response = message.payload
return jsonify({"status": "success"})

    except Exception as e:
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Running the Agent

Communication Flow

Frontend Implementation

Setting up the Vite Project

Create a new Vite project:

logger.error(f"Error in webhook: {e}")
return jsonify({"error": str(e)}), 500

if __name__ == "__main__":
    load_dotenv()
    primary_agent.initialize()
    app.run(host="0.0.0.0", port=5001)

1. User submits query through frontend

2. Query reaches Primary Agent
3. Primary Agent forwards to Financial Analysis Agent

4. Financial Analysis Agent processes query (using implementation from Chapter 2)
5. Response returns through Primary Agent
6. Frontend displays results

# Create new project
npm create vite@latest frontend -- --template react
cd frontend

# Install required dependencies
npm install

# Install additional dependencies
npm install lucide-react  # For icons
npm install @radix-ui/react-slot @radix-ui/react-icons  # For shadcn/ui

# Set up Tailwind CSS
npm install -D tailwindcss postcss autoprefixer
npx tailwindcss init -p
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Configure Tailwind CSS (tailwind.config.js)

Main Application Component (src/App.jsx)

Main Chat Component (src/components/OptimusPrime.jsx)

The OptimusPrime component implements the chat interface:

Message Handling and UI State

/** @type {import('tailwindcss').Config} */
export default {
  content: [
    "./index.html",
    "./src/**/*.{js,ts,jsx,tsx}",
  ],
  theme: {
    extend: {},
  },
  plugins: [],
}

import OptimusPrime from './components/OptimusPrime'

function App() {
  return (
    <div>
      <OptimusPrime />
    </div>
  )
}

export default App

const OptimusPrime = () => {
    const [messages, setMessages] = useState([]);
    const [inputText, setInputText] = useState('');
    const [isProcessing, setIsProcessing] = useState(false);

    // Handles submitting new messages
    const handleSendMessage = async () => {

if (!inputText.trim() || isProcessing) return;
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Response Polling System

// Add user message to UI
const userMessage = {

type: 'user',
content: inputText,
timestamp: new Date().toLocaleTimeString()

};
setMessages(prev => [ ... prev, userMessage]);
setInputText('');
setIsProcessing(true);

try {
// Send request to primary agent

await fetch('/api/send-request', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ input: inputText }),

});

// Start polling for response
startPollingForResponse();

} catch (error) {
handleError(error);

}
    };

    // Polls for agent response
    const startPollingForResponse = () => {

const pollInterval = setInterval(async () => {
try {

const responseData = await fetch('/api/get-response');
const data = await responseData.json();

if (data.status !== 'waiting' && data.analysis_result) {
clearInterval(pollInterval);
setIsProcessing(false);

// Process agent responses
data.analysis_result.analysis.forEach(response => {

setMessages(prev => [ ... prev, {
type: 'agent',
agentName: response.name || 'Agent',
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3.3 Testing and System Interaction

Prerequisites Check

Before testing, ensure all components are running:

content: response.content,
timestamp: new Date().toLocaleTimeString()

}]);
});

}
} catch (error) {

clearInterval(pollInterval);
setIsProcessing(false);
handleError(error);

}
}, 1000);

    };

# 1. Financial Analysis Agent
# In project root
python main.py

# Terminal output should show:
INFO:__main__:Financial Analysis Agent registered successfully!
* Serving Flask app 'app'
* Running on http://0.0.0.0:5008

# 2. Primary Agent
# In another terminal, in backend directory
python app.py

# Terminal output should show:
INFO:__main__:Primary agent initialized successfully!
* Serving Flask app 'app'
* Running on http://0.0.0.0:5001

# 3. Frontend
# In another terminal, in frontend directory
npm run dev

# Terminal output should show:
VITE v5.x.x ready in xxx ms
➜ Local:   http://localhost:5174/
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Testing API Endpoints

You can test the Primary Agent's endpoints using curl:

# 1. Test agent search
curl -X GET "http://localhost:5001/api/search-agents?
query=financial%20analysis"

# Expected response:
{
    "name": "Financial Analysis Agent",
    "address": "agent1..."
}

# 2. Test sending request
curl -X POST "http://localhost:5001/api/send-request" \
-H "Content-Type: application/json" \
-d '{
    "payload": {

"request": "What are Apple'\''s recent revenue trends?"
    }
}'

# Expected response:
{
    "status": "request_sent",
    "agent_address": "agent1...",
    "payload": {

"request": "What are Apple's recent revenue trends?"
    }
}

# 3. Test getting response
curl -X GET "http://localhost:5001/api/get-response"

# Expected response while processing:
{
    "status": "waiting"
}

# Expected response when ready:
{
    "analysis_result": {

"analysis": [
{

"type": "agent",
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End-to-End Testing

Common Issues and Solutions

"content": "Based on the analysis...",
"name": "Financial Analyst"

}
]

    }
}

1. Startup Sequence Test:

# Check if agents are registered correctly
curl -X GET "http://localhost:5001/api/search-agents?query=financial"
# Should return the Financial Analysis Agent in the results

2. UI Testing Checklist:

Open frontend at http://localhost:5174
Verify chat interface loads
Check message input field is enabled

Verify send button is visible

3. Communication Flow Test:

# 1. Send a test query through the UI
Enter: "What were Apple's revenues in the last quarter?"

# 2. Check Primary Agent logs
# Should see something like:
INFO:__main__:Found financial agent at address: agent1...
INFO:__main__:Sending request to financial agent...

# 3. Check Financial Analysis Agent logs
# Should see processing messages and analysis completion

1. CORS Issues:

Access to fetch at 'http://localhost:5001/api/...' from origin 
'http://localhost:5174' has been blocked by CORS policy

68



Solution: Check CORS configuration in app.py:

Solution: Ensure Financial Analysis Agent is running and properly registered:

Solution: Verify all services are running on correct ports:

System Verification Checklist

CORS(app, resources={r"/api/*": {'origins': 'http://localhost:5174'}})

2. Agent Not Found:

{"error": "Financial analysis agent not available"}

# Check agent registration
curl -X GET "http://localhost:5001/api/search-agents?query=financial"

3. Connection Refused:

Failed to fetch: NetworkError when attempting to fetch resource

Financial Analysis Agent: 5008
Primary Agent: 5001

Frontend: 5174

1. Environment Setup:

All environment variables set correctly
Required Python packages installed

Node.js dependencies installed

2. Component Status:

Financial Analysis Agent running (port 5008)
Primary Agent running (port 5001)
Frontend running (port 5174)

3. Integration Points:

Frontend can connect to Primary Agent
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Sample Usage and Response Formats

Query Processing Flow

The system processes financial analysis queries through a structured flow, with agents
collaborating to provide comprehensive analysis.

Example Query Types:

Response Formats

1. Information Gathering Phase

When agents need additional information, they format their response as:

Example:

Primary Agent can find Financial Analysis Agent

Messages flow through the complete system

4. Functionality:

Chat interface responsive

Messages sent successfully
Responses received and displayed
Error handling working

Loading states visible

1. R&D Investment Analysis

2. Supply Chain Risk Assessment
3. Capital Allocation Analysis

Information needed:
[List of required information]

Query: [Original query text]

Information needed:
Historical R&D investment data for Apple.
Comparison of Apple's R&D investment trends with key competitors.

Query: How has Apple's R&D investment strategy evolved...
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2. SEC Analysis Response Format

SEC Agent provides structured analysis in three sections:

3. Search Agent Response Format

Search Agent provides market research in three sections:

1. Data from SEC Filings:
- [Specific data points]
- [Financial metrics]
- [Trends]

2. Additional Context Needed:
- [Required supplementary data]
- [Missing information]

3. Analysis:
- [Detailed analysis]
- [Insights]
- [Implications]

1. Market Data:
- [Current data]
- [Statistics]
- [Metrics]

2. Analyst Views:
- [Expert opinions]
- [Market sentiment]
- [Industry analysis]

3. Relevance to SEC Data:
- [Connections to SEC findings]
- [Comparative analysis]
- [Market context]
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Example Interaction Flow

Query:

"How has Apple's R&D investment strategy evolved compared to competitors?"

Response Sequence:

1. Initial Information Request:

Information needed:
Historical R&D investment data for Apple.
Comparison of Apple's R&D investment trends with key 

competitors.

2. SEC Agent Analysis:

Data from SEC Filings:
- Apple's R&D Investment Trends:
- 2024: $31,370 million
- 2023: $29,915 million
[...]

3. Search Agent Analysis:

Market Data:
- Samsung's R&D Investment:
- 2024: $24 billion
- 2023: 28.34 trillion KRW

[...]
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Sample queries and output
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Conclusion
This guide provides an easy introduction to AI agents, clarifying their fundamental 
characteristics and common implementation patterns. We started by examining the core 
concepts that distinguish AI agents from other types of AI applications. While there is no single 
universal standard definition of an 'AI agent', we identified a spectrum of autonomy and 
capabilities that characterize these systems. The discussion covered essential components of 
AI agents, various system types, common misconceptions, and the dynamics of multi-agent 
interactions.

We developed a very simple AI agent using langgraph. More importantly, this guide emphasizes 
the platform-agnostic nature of agent development and registration. Whether you're building 
agents using LangGraph, CrewAI, AutoGen, LangChain, Phidata, or any other framework, the 
Fetch.ai's Agentverse platform offers a unified solution for agent discovery and collaboration. By 
registering your agents with Agentverse through the Fetch Network's Almanac contract, you 
enable them to be discovered by and interact with other agents, regardless of their underlying 
framework.

This open and flexible approach to agent registration promotes:

Cross-framework collaboration between agents
Framework-independent agent discovery

Seamless integration of diverse agent implementations
Growth of a diverse agent ecosystem
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Appendix
Some useful things to know
5 Stages towards AGI

According to OpenAI's recently unveiled five-step roadmap for tracking progress towards
Artificial General Intelligence (AGI), the stages are:

This classification system was shared with OpenAI employees on July 9, 2024, and represents
the company's structured approach to measuring advancements in AI development.

Definition of an AI Agent from a widely followed academic
resource

According to Stuart Russell and Peter Norvig in their textbook "Artificial Intelligence: A Modern
Approach," an AI agent is defined as:

"Anything that can be viewed as perceiving its environment through sensors and acting upon
that environment through actuators"

This definition emphasizes two key aspects:

1. Conversational AI: This is the current level, where AI systems like ChatGPT excel at
engaging in natural, human-like conversations across various topics.

2. Reasoning AI: At this level, AI systems can solve complex problems at a doctorate level of
education without access to external resources. OpenAI believes it is approaching this
stage.

3. Autonomous AI: These "Agents" can operate independently for extended periods, making
decisions and adapting to changing circumstances without constant human oversight.

4. Innovating AI: At this stage, AI systems can develop groundbreaking ideas and solutions
across various fields, driving innovation and progress independently.

5. Organizational AI: The ultimate level where AI systems can function as entire organizations,
possessing strategic thinking, operational efficiency, and adaptability to manage complex
systems and achieve organizational goals.

1. Perception: The agent gathers information about its environment using sensors.

2. Action: The agent influences its environment by taking actions through actuators.

78



An agent implements a function that maps percept sequences to actions. This broad definition
encompasses a wide range of AI systems.

Classification of AI Agents

Russell and Norvig classify AI agents into five main categories based on their level of
sophistication:

This classification represents increasing levels of sophistication and capability in AI agents,
from simple reactive systems to complex, adaptive learners. Each type builds upon the
capabilities of the previous one, adding new functionalities and ways of interacting with the
environment.

1. Simple Reflex Agents:
Act based on current percepts, ignoring past history
Use condition-action rules: "if condition, then action"

Work best in fully observable environments
May get stuck in infinite loops in partially observable environments

2. Model-Based Reflex Agents:
Maintain an internal model of the world
Can handle partially observable environments

Use the model to keep track of unseen parts of the environment
Make decisions based on both current percepts and internal state

3. Goal-Based Agents:
Have explicit goals and consider future consequences of actions
Use searching and planning to choose actions that achieve their goals
More flexible than reflex agents as they can adapt to changing goals

4. Utility-Based Agents:
Use a utility function to measure the desirability of different states

Can compare and choose between different goals based on expected utility
Aim to maximize their own "happiness" or satisfaction

5. Learning Agents:
Can improve performance over time through experience
Have a learning component that modifies their behavior based on observations
Can adapt to new environments and improve their decision-making abilities
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